Theoretical insights into the mechanism of ferroptosis suppression via inactivation of a lipid peroxide radical by liproxstatin-1.

نویسندگان

  • Xiehuang Sheng
  • Chao Shan
  • Jianbiao Liu
  • Jintong Yang
  • Bin Sun
  • Dezhan Chen
چکیده

Ferroptosis is a recently discovered iron-dependent form of non-apoptotic cell death caused by the accumulation of membrane lipid peroxidation products, which is involved in various pathological conditions of the brain, kidney, liver and heart. A potent spiroquinoxalinamine derivative named liproxstatin-1 is discovered by high-throughput screening, which is able to suppress ferroptosis via lipid peroxide scavenging in vivo. Thus, molecular simulations, density functional theory (DFT) and variational transition-state theory with a small-curvature tunneling (SCT) coefficient are utilized to elucidate the detailed mechanisms of inactivation of a lipid peroxide radical by liproxstatin-1. H-atom abstracted from liproxstatin-1 by a CH3OO˙ radical occurs preferentially at the aromatic amine site (1'-NH) under thermodynamic and frontier molecular orbital analysis. The value of a calculated rate constant at 300 K is up to 6.38 × 103 M-1 S-1, indicating that the quantum tunneling effect is responsible for making a free radical trapping reaction more efficient by liproxstatin-1. The production of a liproxstatin-1 radical is easily regenerated to the active reduced form by ubiquinol in the body to avoid secondary damage by free radicals. A benzene ring and the higher HOMO energy are beneficial to enhance the lipid radical scavenging activity based on the structure-activity relationship study. Overall, the present results provide theoretical insights into the exploration of novel ferroptosis inhibitors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Mechanism of Cytoprotection by Ferrostatin-1 and Liproxstatin-1 and the Role of Lipid Peroxidation in Ferroptotic Cell Death

Ferroptosis is a form of regulated necrosis associated with the iron-dependent accumulation of lipid hydroperoxides that may play a key role in the pathogenesis of degenerative diseases in which lipid peroxidation has been implicated. High-throughput screening efforts have identified ferrostatin-1 (Fer-1) and liproxstatin-1 (Lip-1) as potent inhibitors of ferroptosis - an activity that has been...

متن کامل

Ferroptosis: a novel cell death form will be a promising therapy target for diseases.

Recently, Friedmann Angeli et al. [1] reported that the loss of ferroptosis regulation enzyme glutathione peroxidase 4 (GPX4)will cause an overwhelming ferroptosis of renal cells, which eventually induces renal failure. Yet, liproxstatin-1, a novel potent ferroptosis inhibitor, is able to alleviate tissue injury of ischemia/reperfusion-induced renal injury. This study smartly expanded the resea...

متن کامل

Ultrasmall nanoparticles induce ferroptosis in nutrient-deprived cancer cells and suppress tumour growth

The design of cancer-targeting particles with precisely tuned physicochemical properties may enhance the delivery of therapeutics and access to pharmacological targets. However, a molecular-level understanding of the interactions driving the fate of nanomedicine in biological systems remains elusive. Here, we show that ultrasmall (<10 nm in diameter) poly(ethylene glycol)-coated silica nanopart...

متن کامل

BID links ferroptosis to mitochondrial cell death pathways

Ferroptosis has been defined as an oxidative and iron-dependent pathway of regulated cell death that is distinct from caspase-dependent apoptosis and established pathways of death receptor-mediated regulated necrosis. While emerging evidence linked features of ferroptosis induced e.g. by erastin-mediated inhibition of the Xc- system or inhibition of glutathione peroxidase 4 (Gpx4) to an increas...

متن کامل

Cysteine Dioxygenase 1 Mediates Erastin-Induced Ferroptosis in Human Gastric Cancer Cells1

BACKGROUND Ferroptosis is a recently discovered form of iron-dependent nonapoptotic cell death. It is characterized by loss of the activity of the lipid repair enzyme, glutathione peroxidase 4 (GPX4), and accumulation of lethal reactive lipid oxygen species. However, we still know relatively little about ferroptosis and its molecular mechanism in gastric cancer (GC) cells. Here, we demonstrate ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 19 20  شماره 

صفحات  -

تاریخ انتشار 2017